Editing Appliance. Its name evokes images of refrigerators, dish washers, microwaves and toasters. Turn it on, stick in some video, set the timer and wait for a finished project. Well, almost. While they are relatively easy to use, these boxes are anything but simple. Inside they are more like high-powered computers than kitchen gadgets.
What exactly is an editing appliance? If you’re a regular reader, you’ll probably recognize names like Casablanca and Avio from Draco Systems and Screenplay and Sequel from Applied Magic. With the entry-level prices for these devices now below the $1,500, editing appliances have become extremely attractive to first-time editors and budget minded pros. Many people are still confused about just what appliances are and how they do what they do. In this article, you’ll get to know the anatomy of an editing appliance as we perform an appliance dissection.
Pull the lid off any editing appliance and you’ll find some pretty ordinary computer parts, a hard drive and some specialized software. Like computers that can process video, editing appliances have CPUs, memory, capture/compression hardware, one or more large, fast, hard drives and editing software. They also have connectors for input and output devices. Some have "slots" for smart media cards, some have CD-ROM drives and others rely on floppy disk drives to allow software updates and effects plug-ins. Let’s take a look at each of the major pieces one at a time and see how they work together to make an editing appliance tick.
Processor
The CPU, or Central Processing Unit, is the heart of any computer system. Many of the editing appliances use processors that may seem rather slow compared to the state-of-the-art CPU technology in your home computer. Not to worry though, the CPUs that come in editing appliances are more than sufficient for the task at hand. Remember, unlike a PC or Mac, which must do everything for everyone (including running Windows, creating spreadsheets, word processing, playing games, balancing checkbooks and accessing the Internet), an editing appliance only has to do one job: edit video. Editing appliance manufacturers strike a balance between the CPU’s cost and performance. And while the CPU speed can factor in on the rendering times of transitions or special effects, many editing appliances now provide real-time or near-real-time rendering that works independently from the CPU.
Memory
Memory comes in many forms and is just what its name implies. An editing appliance stores its programs, data and video in various types of memory, including both volatile and non-volatile memory. Volatile, like its name suggests, is not stable. You lose its content when you turn off your computer. Random access memory (RAM) would be one example of volatile memory. Non-volatile memory usually resides on a disk or hard drive and you retain its content even when you power down your computer. The storage capacity of a computer’s hard drive would be an example of non-volatile memory. A PC running Windows, for example, requires tens of megabytes of RAM to function smoothly, but an editing appliance needs only a few megabytes of memory. Some use as little as four megabytes of RAM. But, as we’ve already seen with the CPU, what might be inadequate for a PC may be more than enough for an editing appliance.
Hard Drive
Unlike most general-purpose computers, appliances use hard drives primarily to store the compressed digital video. With a PC, the hard drive quickly fills with applications and data that have little or nothing to do with your video editing tasks. Windows and the Mac OS both consume huge amounts of disk space. Video editing and special effects software also eat up large amounts of storage space. Most editing appliances conserve valuable space by storing their operating system and editing software in one form or another of ROM (Read Only Memory) and by only storing data related to the user’s preferences and projects on the hard drive. This not only allows the system to maximize the performance from the drives, but it also allows the operating system and application software to be available almost instantly when you turn on the appliance. One notable exception to this is the original Casablanca, which holds its operating system on the removeable hard drive.
Capture and Compression
Capture and compression hardware is essential for any form of digital video processing. Capturing video in a digital format is the first step to working with it in the digital domain. All current consumer editing appliances require compression hardware because of the huge amount of space that video storage requires. Uncompressed video can take from anywhere between 2-to-100 times the storage space that compressed video would. Codecs (compressor/decompressors) solve this storage limitation. There are a variety of different Codecs that work in different ways. But all of them essentially squeeze the incoming digital video data into a more compact form so the hard drives can keep up.
Inputs/Outputs
All of the appliances on the market accept analog audio and video inputs. RCA and S-video video connections are standard issue. If you use a Mini DV or Digital8 camcorder, you can get an optional IEEE 1394 DV input on a Avio, Casablanca, or Sequel or Screenplay, to allow you to transfer the digital video from your camcorder to the appliance in its native DV form. Sequel and Avio also offer optional DV inputs, but they do not store and manipulate the video in the DV format. Instead they "transcode" the data into their own native format. This allows more storage space for high resolution DV video, but compromises image quality slightly. That’s not to say that the images look bad by any means. Many viewers won’t be able to detect a difference. Those who examine each frame closely may see a digital artifact or two.
Draco’s Avio uses MPEG-2 compression while Applied Magic’s Sequel uses Wavelet compression technology. The details of the two compression methods are beyond the scope of this article. It’s the high quality video and manageable data rates that concern us here. You won’t get the same quality of transfers you get with a higher-end system like Draco’s Casablanca or Applied Magic’s Screenplay, but the images created by the Avio and Sequel will look good provided they are shot well.
Editing Software
Each appliance comes with its own editing program that is made and installed by the manufacturer. Proprietary software sets appliances apart from PCs. While computers can run a wide variety of software applications, editing appliances run only the editing program installed at the factory. You won’t be installing Adobe Premiere or Apple’s Final Cut Pro on one of these babies. As such, the interface and its ease-of-use are key factors for anyone considering an editing appliance.
What is the advantage? Because the appliance’s operating system runs only a single program, it yields a system that can render effects and transitions in real or near-real time, using much less expensive hardware than a PC that has similar capabilities.
Other Inputs
An appliance isn’t a sealed black box, however. While each model has its own method, they all offer some procedure for upgrading the on-board software and adding additional effects and transitions. Methods vary from CD-ROM drives to floppy drives to SmartMedia slots. As appliances gain popularity, the number of available add-ons and plug-ins will likely increase. The software upgrade process could hardly be easier. With the Avio, for example, you simply plug in the SmartMedia card before you turn the unit on, and when you apply power the updates are implemented automatically. It’s hard to imagine anything much easier than this.
Last Look
And so, you have had a peek inside the typical editing appliance. While its parts are similar to those inside a high-tech computer, you cannot think of editing appliances as computers in the sense that you have become accustomed. Essentially, an editing appliance is a computer with a single purpose: editing video. And while it performs just one function, it does its job extremely well.